3.10.13 \(\int \frac {1}{(d+e x) \sqrt {f+g x} \sqrt {a+b x+c x^2}} \, dx\) [913]

3.10.13.1 Optimal result
3.10.13.2 Mathematica [C] (verified)
3.10.13.3 Rubi [A] (verified)
3.10.13.4 Maple [A] (verified)
3.10.13.5 Fricas [F(-1)]
3.10.13.6 Sympy [F]
3.10.13.7 Maxima [F]
3.10.13.8 Giac [F]
3.10.13.9 Mupad [F(-1)]

3.10.13.1 Optimal result

Integrand size = 31, antiderivative size = 280 \[ \int \frac {1}{(d+e x) \sqrt {f+g x} \sqrt {a+b x+c x^2}} \, dx=-\frac {\sqrt {2} \sqrt {2 c f-\left (b-\sqrt {b^2-4 a c}\right ) g} \sqrt {1-\frac {2 c (f+g x)}{2 c f-\left (b-\sqrt {b^2-4 a c}\right ) g}} \sqrt {1-\frac {2 c (f+g x)}{2 c f-\left (b+\sqrt {b^2-4 a c}\right ) g}} \operatorname {EllipticPi}\left (\frac {e \left (2 c f-b g+\sqrt {b^2-4 a c} g\right )}{2 c (e f-d g)},\arcsin \left (\frac {\sqrt {2} \sqrt {c} \sqrt {f+g x}}{\sqrt {2 c f-\left (b-\sqrt {b^2-4 a c}\right ) g}}\right ),\frac {b-\sqrt {b^2-4 a c}-\frac {2 c f}{g}}{b+\sqrt {b^2-4 a c}-\frac {2 c f}{g}}\right )}{\sqrt {c} (e f-d g) \sqrt {a+b x+c x^2}} \]

output
-EllipticPi(2^(1/2)*c^(1/2)*(g*x+f)^(1/2)/(2*c*f-g*(b-(-4*a*c+b^2)^(1/2))) 
^(1/2),1/2*e*(2*c*f-b*g+g*(-4*a*c+b^2)^(1/2))/c/(-d*g+e*f),((b-2*c*f/g-(-4 
*a*c+b^2)^(1/2))/(b-2*c*f/g+(-4*a*c+b^2)^(1/2)))^(1/2))*2^(1/2)*(1-2*c*(g* 
x+f)/(2*c*f-g*(b-(-4*a*c+b^2)^(1/2))))^(1/2)*(2*c*f-g*(b-(-4*a*c+b^2)^(1/2 
)))^(1/2)*(1-2*c*(g*x+f)/(2*c*f-g*(b+(-4*a*c+b^2)^(1/2))))^(1/2)/(-d*g+e*f 
)/c^(1/2)/(c*x^2+b*x+a)^(1/2)
 
3.10.13.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 24.04 (sec) , antiderivative size = 499, normalized size of antiderivative = 1.78 \[ \int \frac {1}{(d+e x) \sqrt {f+g x} \sqrt {a+b x+c x^2}} \, dx=\frac {i (f+g x) \sqrt {2-\frac {4 \left (c f^2+g (-b f+a g)\right )}{\left (2 c f-b g+\sqrt {\left (b^2-4 a c\right ) g^2}\right ) (f+g x)}} \sqrt {1+\frac {2 \left (c f^2+g (-b f+a g)\right )}{\left (-2 c f+b g+\sqrt {\left (b^2-4 a c\right ) g^2}\right ) (f+g x)}} \left (\operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {2} \sqrt {\frac {c f^2-b f g+a g^2}{-2 c f+b g+\sqrt {\left (b^2-4 a c\right ) g^2}}}}{\sqrt {f+g x}}\right ),-\frac {-2 c f+b g+\sqrt {\left (b^2-4 a c\right ) g^2}}{2 c f-b g+\sqrt {\left (b^2-4 a c\right ) g^2}}\right )-\operatorname {EllipticPi}\left (\frac {(e f-d g) \left (2 c f-b g-\sqrt {\left (b^2-4 a c\right ) g^2}\right )}{2 e \left (c f^2+g (-b f+a g)\right )},i \text {arcsinh}\left (\frac {\sqrt {2} \sqrt {\frac {c f^2-b f g+a g^2}{-2 c f+b g+\sqrt {\left (b^2-4 a c\right ) g^2}}}}{\sqrt {f+g x}}\right ),-\frac {-2 c f+b g+\sqrt {\left (b^2-4 a c\right ) g^2}}{2 c f-b g+\sqrt {\left (b^2-4 a c\right ) g^2}}\right )\right )}{(-e f+d g) \sqrt {\frac {c f^2+g (-b f+a g)}{-2 c f+b g+\sqrt {\left (b^2-4 a c\right ) g^2}}} \sqrt {a+x (b+c x)}} \]

input
Integrate[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]),x]
 
output
(I*(f + g*x)*Sqrt[2 - (4*(c*f^2 + g*(-(b*f) + a*g)))/((2*c*f - b*g + Sqrt[ 
(b^2 - 4*a*c)*g^2])*(f + g*x))]*Sqrt[1 + (2*(c*f^2 + g*(-(b*f) + a*g)))/(( 
-2*c*f + b*g + Sqrt[(b^2 - 4*a*c)*g^2])*(f + g*x))]*(EllipticF[I*ArcSinh[( 
Sqrt[2]*Sqrt[(c*f^2 - b*f*g + a*g^2)/(-2*c*f + b*g + Sqrt[(b^2 - 4*a*c)*g^ 
2])])/Sqrt[f + g*x]], -((-2*c*f + b*g + Sqrt[(b^2 - 4*a*c)*g^2])/(2*c*f - 
b*g + Sqrt[(b^2 - 4*a*c)*g^2]))] - EllipticPi[((e*f - d*g)*(2*c*f - b*g - 
Sqrt[(b^2 - 4*a*c)*g^2]))/(2*e*(c*f^2 + g*(-(b*f) + a*g))), I*ArcSinh[(Sqr 
t[2]*Sqrt[(c*f^2 - b*f*g + a*g^2)/(-2*c*f + b*g + Sqrt[(b^2 - 4*a*c)*g^2]) 
])/Sqrt[f + g*x]], -((-2*c*f + b*g + Sqrt[(b^2 - 4*a*c)*g^2])/(2*c*f - b*g 
 + Sqrt[(b^2 - 4*a*c)*g^2]))]))/((-(e*f) + d*g)*Sqrt[(c*f^2 + g*(-(b*f) + 
a*g))/(-2*c*f + b*g + Sqrt[(b^2 - 4*a*c)*g^2])]*Sqrt[a + x*(b + c*x)])
 
3.10.13.3 Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 402, normalized size of antiderivative = 1.44, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {1279, 187, 413, 413, 412}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(d+e x) \sqrt {f+g x} \sqrt {a+b x+c x^2}} \, dx\)

\(\Big \downarrow \) 1279

\(\displaystyle \frac {\sqrt {-\sqrt {b^2-4 a c}+b+2 c x} \sqrt {\sqrt {b^2-4 a c}+b+2 c x} \int \frac {1}{\sqrt {b+2 c x-\sqrt {b^2-4 a c}} \sqrt {b+2 c x+\sqrt {b^2-4 a c}} (d+e x) \sqrt {f+g x}}dx}{\sqrt {a+b x+c x^2}}\)

\(\Big \downarrow \) 187

\(\displaystyle -\frac {2 \sqrt {-\sqrt {b^2-4 a c}+b+2 c x} \sqrt {\sqrt {b^2-4 a c}+b+2 c x} \int \frac {1}{(e f-d g-e (f+g x)) \sqrt {b+\frac {2 c (f+g x)}{g}-\sqrt {b^2-4 a c}-\frac {2 c f}{g}} \sqrt {b+\frac {2 c (f+g x)}{g}+\sqrt {b^2-4 a c}-\frac {2 c f}{g}}}d\sqrt {f+g x}}{\sqrt {a+b x+c x^2}}\)

\(\Big \downarrow \) 413

\(\displaystyle -\frac {2 \sqrt {-\sqrt {b^2-4 a c}+b+2 c x} \sqrt {\sqrt {b^2-4 a c}+b+2 c x} \sqrt {1-\frac {2 c (f+g x)}{2 c f-g \left (b-\sqrt {b^2-4 a c}\right )}} \int \frac {1}{(e f-d g-e (f+g x)) \sqrt {b+\frac {2 c (f+g x)}{g}+\sqrt {b^2-4 a c}-\frac {2 c f}{g}} \sqrt {1-\frac {2 c (f+g x)}{2 c f-\left (b-\sqrt {b^2-4 a c}\right ) g}}}d\sqrt {f+g x}}{\sqrt {a+b x+c x^2} \sqrt {-\sqrt {b^2-4 a c}+b+\frac {2 c (f+g x)}{g}-\frac {2 c f}{g}}}\)

\(\Big \downarrow \) 413

\(\displaystyle -\frac {2 \sqrt {-\sqrt {b^2-4 a c}+b+2 c x} \sqrt {\sqrt {b^2-4 a c}+b+2 c x} \sqrt {1-\frac {2 c (f+g x)}{2 c f-g \left (b-\sqrt {b^2-4 a c}\right )}} \sqrt {1-\frac {2 c (f+g x)}{2 c f-g \left (\sqrt {b^2-4 a c}+b\right )}} \int \frac {1}{(e f-d g-e (f+g x)) \sqrt {1-\frac {2 c (f+g x)}{2 c f-\left (b-\sqrt {b^2-4 a c}\right ) g}} \sqrt {1-\frac {2 c (f+g x)}{2 c f-\left (b+\sqrt {b^2-4 a c}\right ) g}}}d\sqrt {f+g x}}{\sqrt {a+b x+c x^2} \sqrt {-\sqrt {b^2-4 a c}+b+\frac {2 c (f+g x)}{g}-\frac {2 c f}{g}} \sqrt {\sqrt {b^2-4 a c}+b+\frac {2 c (f+g x)}{g}-\frac {2 c f}{g}}}\)

\(\Big \downarrow \) 412

\(\displaystyle -\frac {\sqrt {2} \sqrt {-\sqrt {b^2-4 a c}+b+2 c x} \sqrt {\sqrt {b^2-4 a c}+b+2 c x} \sqrt {2 c f-g \left (b-\sqrt {b^2-4 a c}\right )} \sqrt {1-\frac {2 c (f+g x)}{2 c f-g \left (b-\sqrt {b^2-4 a c}\right )}} \sqrt {1-\frac {2 c (f+g x)}{2 c f-g \left (\sqrt {b^2-4 a c}+b\right )}} \operatorname {EllipticPi}\left (\frac {e \left (2 c f-b g+\sqrt {b^2-4 a c} g\right )}{2 c (e f-d g)},\arcsin \left (\frac {\sqrt {2} \sqrt {c} \sqrt {f+g x}}{\sqrt {2 c f-\left (b-\sqrt {b^2-4 a c}\right ) g}}\right ),\frac {2 c f-\left (b-\sqrt {b^2-4 a c}\right ) g}{2 c f-\left (b+\sqrt {b^2-4 a c}\right ) g}\right )}{\sqrt {c} \sqrt {a+b x+c x^2} (e f-d g) \sqrt {-\sqrt {b^2-4 a c}+b+\frac {2 c (f+g x)}{g}-\frac {2 c f}{g}} \sqrt {\sqrt {b^2-4 a c}+b+\frac {2 c (f+g x)}{g}-\frac {2 c f}{g}}}\)

input
Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]),x]
 
output
-((Sqrt[2]*Sqrt[2*c*f - (b - Sqrt[b^2 - 4*a*c])*g]*Sqrt[b - Sqrt[b^2 - 4*a 
*c] + 2*c*x]*Sqrt[b + Sqrt[b^2 - 4*a*c] + 2*c*x]*Sqrt[1 - (2*c*(f + g*x))/ 
(2*c*f - (b - Sqrt[b^2 - 4*a*c])*g)]*Sqrt[1 - (2*c*(f + g*x))/(2*c*f - (b 
+ Sqrt[b^2 - 4*a*c])*g)]*EllipticPi[(e*(2*c*f - b*g + Sqrt[b^2 - 4*a*c]*g) 
)/(2*c*(e*f - d*g)), ArcSin[(Sqrt[2]*Sqrt[c]*Sqrt[f + g*x])/Sqrt[2*c*f - ( 
b - Sqrt[b^2 - 4*a*c])*g]], (2*c*f - (b - Sqrt[b^2 - 4*a*c])*g)/(2*c*f - ( 
b + Sqrt[b^2 - 4*a*c])*g)])/(Sqrt[c]*(e*f - d*g)*Sqrt[a + b*x + c*x^2]*Sqr 
t[b - Sqrt[b^2 - 4*a*c] - (2*c*f)/g + (2*c*(f + g*x))/g]*Sqrt[b + Sqrt[b^2 
 - 4*a*c] - (2*c*f)/g + (2*c*(f + g*x))/g]))
 

3.10.13.3.1 Defintions of rubi rules used

rule 187
Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_ 
)]*Sqrt[(g_.) + (h_.)*(x_)]), x_] :> Simp[-2   Subst[Int[1/(Simp[b*c - a*d 
- b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + f*(x^2/d), x]]*Sqrt[Simp[(d*g - c*h)/ 
d + h*(x^2/d), x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, 
g, h}, x] &&  !SimplerQ[e + f*x, c + d*x] &&  !SimplerQ[g + h*x, c + d*x]
 

rule 412
Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x 
_)^2]), x_Symbol] :> Simp[(1/(a*Sqrt[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b* 
(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c, d, e, 
 f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && S 
implerSqrtQ[-f/e, -d/c])
 

rule 413
Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x 
_)^2]), x_Symbol] :> Simp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/((a + 
 b*x^2)*Sqrt[1 + (d/c)*x^2]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c, d, 
e, f}, x] &&  !GtQ[c, 0]
 

rule 1279
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_ 
) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[b 
 - q + 2*c*x]*(Sqrt[b + q + 2*c*x]/Sqrt[a + b*x + c*x^2])   Int[1/((d + e*x 
)*Sqrt[f + g*x]*Sqrt[b - q + 2*c*x]*Sqrt[b + q + 2*c*x]), x], x]] /; FreeQ[ 
{a, b, c, d, e, f, g}, x]
 
3.10.13.4 Maple [A] (verified)

Time = 3.34 (sec) , antiderivative size = 330, normalized size of antiderivative = 1.18

method result size
default \(\frac {\left (-g \sqrt {-4 a c +b^{2}}-b g +2 c f \right ) \Pi \left (\sqrt {2}\, \sqrt {-\frac {\left (g x +f \right ) c}{g \sqrt {-4 a c +b^{2}}+b g -2 c f}}, \frac {\left (g \sqrt {-4 a c +b^{2}}+b g -2 c f \right ) e}{2 c \left (d g -e f \right )}, \sqrt {-\frac {g \sqrt {-4 a c +b^{2}}+b g -2 c f}{2 c f -b g +g \sqrt {-4 a c +b^{2}}}}\right ) \sqrt {\frac {\left (b +2 c x +\sqrt {-4 a c +b^{2}}\right ) g}{g \sqrt {-4 a c +b^{2}}+b g -2 c f}}\, \sqrt {\frac {\left (-b -2 c x +\sqrt {-4 a c +b^{2}}\right ) g}{2 c f -b g +g \sqrt {-4 a c +b^{2}}}}\, \sqrt {2}\, \sqrt {-\frac {\left (g x +f \right ) c}{g \sqrt {-4 a c +b^{2}}+b g -2 c f}}\, \sqrt {c \,x^{2}+b x +a}\, \sqrt {g x +f}}{c \left (d g -e f \right ) \left (c g \,x^{3}+b g \,x^{2}+c f \,x^{2}+a g x +b f x +f a \right )}\) \(330\)
elliptic \(\frac {2 \sqrt {\left (g x +f \right ) \left (c \,x^{2}+b x +a \right )}\, \left (\frac {f}{g}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x -\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {f}{g}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {f}{g}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \Pi \left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \frac {-\frac {f}{g}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {f}{g}+\frac {d}{e}}, \sqrt {\frac {-\frac {f}{g}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {f}{g}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\right )}{\sqrt {g x +f}\, \sqrt {c \,x^{2}+b x +a}\, e \sqrt {c g \,x^{3}+b g \,x^{2}+c f \,x^{2}+a g x +b f x +f a}\, \left (-\frac {f}{g}+\frac {d}{e}\right )}\) \(377\)

input
int(1/(e*x+d)/(g*x+f)^(1/2)/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
(-g*(-4*a*c+b^2)^(1/2)-b*g+2*c*f)*EllipticPi(2^(1/2)*(-(g*x+f)*c/(g*(-4*a* 
c+b^2)^(1/2)+b*g-2*c*f))^(1/2),1/2*(g*(-4*a*c+b^2)^(1/2)+b*g-2*c*f)*e/c/(d 
*g-e*f),(-(g*(-4*a*c+b^2)^(1/2)+b*g-2*c*f)/(2*c*f-b*g+g*(-4*a*c+b^2)^(1/2) 
))^(1/2))*((b+2*c*x+(-4*a*c+b^2)^(1/2))*g/(g*(-4*a*c+b^2)^(1/2)+b*g-2*c*f) 
)^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))*g/(2*c*f-b*g+g*(-4*a*c+b^2)^(1/2))) 
^(1/2)*2^(1/2)*(-(g*x+f)*c/(g*(-4*a*c+b^2)^(1/2)+b*g-2*c*f))^(1/2)/c*(c*x^ 
2+b*x+a)^(1/2)*(g*x+f)^(1/2)/(d*g-e*f)/(c*g*x^3+b*g*x^2+c*f*x^2+a*g*x+b*f* 
x+a*f)
 
3.10.13.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x) \sqrt {f+g x} \sqrt {a+b x+c x^2}} \, dx=\text {Timed out} \]

input
integrate(1/(e*x+d)/(g*x+f)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas 
")
 
output
Timed out
 
3.10.13.6 Sympy [F]

\[ \int \frac {1}{(d+e x) \sqrt {f+g x} \sqrt {a+b x+c x^2}} \, dx=\int \frac {1}{\left (d + e x\right ) \sqrt {f + g x} \sqrt {a + b x + c x^{2}}}\, dx \]

input
integrate(1/(e*x+d)/(g*x+f)**(1/2)/(c*x**2+b*x+a)**(1/2),x)
 
output
Integral(1/((d + e*x)*sqrt(f + g*x)*sqrt(a + b*x + c*x**2)), x)
 
3.10.13.7 Maxima [F]

\[ \int \frac {1}{(d+e x) \sqrt {f+g x} \sqrt {a+b x+c x^2}} \, dx=\int { \frac {1}{\sqrt {c x^{2} + b x + a} {\left (e x + d\right )} \sqrt {g x + f}} \,d x } \]

input
integrate(1/(e*x+d)/(g*x+f)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima 
")
 
output
integrate(1/(sqrt(c*x^2 + b*x + a)*(e*x + d)*sqrt(g*x + f)), x)
 
3.10.13.8 Giac [F]

\[ \int \frac {1}{(d+e x) \sqrt {f+g x} \sqrt {a+b x+c x^2}} \, dx=\int { \frac {1}{\sqrt {c x^{2} + b x + a} {\left (e x + d\right )} \sqrt {g x + f}} \,d x } \]

input
integrate(1/(e*x+d)/(g*x+f)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(c*x^2 + b*x + a)*(e*x + d)*sqrt(g*x + f)), x)
 
3.10.13.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x) \sqrt {f+g x} \sqrt {a+b x+c x^2}} \, dx=\int \frac {1}{\sqrt {f+g\,x}\,\left (d+e\,x\right )\,\sqrt {c\,x^2+b\,x+a}} \,d x \]

input
int(1/((f + g*x)^(1/2)*(d + e*x)*(a + b*x + c*x^2)^(1/2)),x)
 
output
int(1/((f + g*x)^(1/2)*(d + e*x)*(a + b*x + c*x^2)^(1/2)), x)